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Geometric properties of isovorticity surfaces in magnetohydrodynamic turbulence
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The stretching effect of vorticity in magnetohydrodynamic turbulence spontaneously generates
flat or elongated structures that are unstable with respect to reconnecting (tearing-mode-type)
perturbations. The instability could develop faster than the nonlinear energy cascade in a range of
scale lengths whose extension depends on the Reynolds number. We argue that, if the instability is
effectively at work, the fractal dimension of the isovorticity density surface in the above mentioned
range is of the order of D = 2.31, in contrast to larger scales where D = 2.75.

PACS number(s): 47.65.+a, 47.27.—i, 52.35.Py

Small-scale stretching in fully developed turbulence
causes both passive scalar as the temperature field and
active field as the vorticity to concentrate in small regions
of space. In general the level surfaces, say the surfaces
of isoconcentration of the fields, assume a very compli-
cated shape and the surface area has a fractal dimension
D which is related to the scaling properties of the tur-
bulent fields and depends on the length scale £. The
geometric properties of level surfaces for the tempera-
ture field and the vorticity in hydrodynamic turbulence
have been recently studied both from a theoretical and
an experimental point of view [1-3]. It has been found
that, for scales £ larger than an inner scale £,, a level set
appears as a smooth surface of dimension D = 8/3. This
is true also in magnetohydrodynamic (MHD) turbulence
[4], apart from the fact that in this case the dimension of
the level sets of the current density is found to be higher,
say D = 11/4, in agreement with the results of a numeri-
cal simulation of two-dimensional (2D) MHD turbulence
[5].

Owing to the stretching effect, the small scales in MHD
turbulence are unstable with respect to the development
of reconnecting perturbations of the tearing mode type
[6-9]. Actually the occurrence of the tearing instability
in MHD turbulence is a matter of debate. However, if
the instability was effectively at work in MHD turbu-
lence, the small scales of MHD turbulence are the nat-

ural place in which the local energy transfer due to the
nonlinear interactions could compete with the nonlocal
energy transfer due to the tearing instability [7]. Since
the small-scale dynamics of MHD turbulence is changed
by this competition, we conjecture the possibility that,
due to this effect, the dimension of the isovorticity sur-
faces could be changed to D = 37/16 in a range of scales
intermediate between ¢ and 2,.

The incompressible MHD equations can be written in
terms of the Elsiisser variables Z+ = ¢ + §/(47rp)1/2,
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The vectors @ and B represent, respectively, the veloc-
ity field and the magnetic field, p is the constant plasma
mass density, and P is the total (magnetic plus kinetic)
pressure. Finally, v represents the kinematic viscosity,
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assumed to be equal to the resistivity, in order not to
worry about coupling between the modes Z+ and Z—
due to the dissipative terms. Generally [10] it is assumed
that the nonlinear interactions are local, that is, they oc-
cur only between fluctuations Zf = &- (Z%(F+8)— Z% (7))
(€ represents the longitudinal unitary vector) at the same
length scale £ = |l7| in the inertial range ({q < £ < L,
where £, is the dissipative scale and L is the largest scale).
The main feature which distinguishes the MHD turbu-
lence from the ordinary fluid turbulence is the Alfvén
effect [10], that is, the advection of small-scale structures
by waves in the large ones. This effect modifies the char-
acteristic time needed to realize the nonlinear energy cas-
cade and, as a consequence, the energy transfer rate per
unit mass [10] is different from the usual Kolmogorov
relation
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(€a = Bo/+/@mp is the Alfvén velocity relative to the in-
homogeneous magnetic field By of the scale L). Relation
(2) relates the stochastic variables Z;" and ef. The MHD
equations (1) are scale invariant providing £ — £A~! and
Z* - Z*X* (A > 0 and h is a parameter) [11]. Since
Zg/t" is invariant (for £ — 0) we expect a scaling law
where Zl:h ~ £". The requirement that the energy trans-
fer rate is independent from the length scale fixes the
Kraichnan value h = h* = 1/4. If intermittency is taken
into account [12,11] a whole set of Hélder exponents h
must be taken into account, so that the scaling exponents
&g of the g th order structure functions ((Z;5)?) ~ €44 [13]
(brackets represent spatial averages), in terms of the set
of generalized dimensions ﬁq introduced by Hentschel
and Procaccia [14], are given by [11]

=24+ (8-1)Dya-1). (3)

It is generally well established (see Ref. [7], and refer-
ences therein) that MHD incompressible turbulence, for a
wide range of initial conditions, tends toward the steady
state of Eq. (1) where
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(dynamical alignment regime). The sign depends on the
initial conditions. Due to the Alfvén effect [10], the
dynamical alignment does not occur when E-By =0
(k denotes the wave vector of a perturbation). To in-
vestigate what happens around these points, we assume
that the process of dynamical alignment has taken place
almost everywere in the fluid and that the flow has a
structure of a pure Alfvén wave, that is Zo_ = 0 and
Z&t = 2cy4, + Ajjz; is a slowly varying vector field.
If we perturb this state with small amplitude fluctua-
tions Zt = Zf,t +62 (for simplicity we consider the
case |6Z%| ~ |6Z~| = |6Z|), with |6Z| < |ZF| and
we look for the linear stability of the structure, it can
be shown [7] that an ideal instability with growth rate
of the order of v;qa ~ 8Zy/¢ (6Z; represents an order of
magnitude estimate for the characteristic perturbations
at the length scale £ [13]) amplifies the perturbations and
produces either flat (quasi-2D) or elongated (ribbonlike)
structures. When these ideal MHD instabilities are sat-
urated, the flat or ribbonlike structures appear to be un-
stable with respect to the usual tearing mode perturba-
tions. These perturbations consist of filamentation of the
vorticity structure, which is usually known as magnetic
field reconnection. The appearance of these instabilities
in numerical simulation of 2D and 3D MHD turbulence
has been reported in some papers (see Refs. [6,8,7], and
references therein). Actually the occurrence of tearing
instabilities in MHD turbulence is a matter of different
points of view. Indeed, in the above mentioned simula-
tions there is strong evidence for the presence of tearing
instabilities, while other simulations (see, for example,
[5]) show that the fully turbulent state consists of an
ensemble of microcurrent sheets which do not show any
signs of tearing instability. In the present paper we do
not enter this debate, rather we would like to emphasize
some effects which could be interesting if the tearing in-
stability is effectively at work. In fact, the occurrence
of these instabilities in MHD turbulence is very interest-
ing because, when viewed in the wave vector space, the
reconnection is equivalent to a mechanism of nonlocal
energy transfer towards smaller scales. This mechanism
could compete with the usual nonlinear energy transfer
which on the contrary is local, thus modifying the small-
scale dynamic of MHD turbulence. In Ref. [7] it is shown
that, if the tearing instability is at work, the usual inertial
range is modified. We then argue that as a consequence
of the modification of the small-scale behavior, the topo-
logical properties of the vorticity field could change at
the smallest-scale length of the inertial range.

Since the typical growth rate of the stretching is of the
order of the ideal times, the ideal modes may develop the
flat or ribbonlike structures at times faster than those
needed for the nonlinear interactions. When the insta-
bility develops, the energy is directly transferred from a
length scale £ to a scale § (nonlocal transfer), given by
/€ ~ 5;1/3 [9], where S¢ ~ 6Z,£/v is the Reynolds num-
ber at the scale £. In the presence of the velocity field
the growth rate of the tearing instability is given by [9]
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The competition between the nonlinear energy cascade
and the linear tearing instability consists in a modifica-
tion of the energy transfer rate [7]. Indeed when ;'
is less than the nonlinear energy transfer time 7, ~
lca/6Z2, the energy is transferred towards the smaller
scales from the (nonlocal) instability rather than from the
(local) nonlinear cascade. The requirement that v, ! < 7
defines a length scale

(6:/L) ~ R™Y/(143&)

(R = caL/v is the Reynolds number of the largest
scales) such that, for £ > ¢;, the transfer is driven by
the nonlinear energy cascade realized on times 7,, while
for £ < ¢, the transfer is driven by the instability on
times v, 1 Note that the ratio between the length £; and
the dissipative length is given by (£;/£4) ~ RP, where
B =& /(14+2€)(1+3&) ~ 2/21. This implies that high
Reynolds numbers are required to resolve the scales un-
der which the tearing instability eventually modifies the
nonlinear energy cascade [7].

Let us consider now the vorticity w = |€7 x 67 |. From
Eq. (1) it can be shown that the nonlinear transfer term
is given by (Z-‘f,t -V)w. Following Ref. [7] we can model the
tearing action at the scale length £, by means of a linear
term given simply by «y,w. The area of the level surface
of the squared vorticity can be estimated by using the
method introduced in Refs. [2,3]. This method consists
essentially in determining the weighted surface area A4, at
a given scale £, which is enclosed in a sphere of radius £.
Then the dimension D is found from the relation A, ~
£P. The estimate is given as an upper bound for 4,
by averaging over the volume of the sphere and over a
short time interval 6t of the order of an eddy-turnover
time. The maximum value of A, is then estimated to be
A2 ~ £3(c1f + G¢ + Ty), where c; is a constant and Gy is
the advection term in Eq. (9) of Ref. [2]. This term can
be estimated to be of the order of

/dt $F CW)(6Z - V)xe ,
5t \7)

where G(w) ~ 8Z} is proportional to the square of the
vorticity inside the sphere of volume V;, and the term
(6Z - V) is the usual transfer rate. The characteris-
tic function xy ~ 1 inside the sphere and x, ~ 0 out-
side the sphere. Using this term, as shown by Biskamp
[4], one can find the maximum value for the function
Gy ~ (c3/vca)l?8Z2 (cs is a constant). The function T}
is a new term which derives from the occurrence of the
tearing instability. Since we model the instability with a
linear relation [7], by using the procedure of Ref. [2] we

can write
/ dt / BF Gw)rexe -
5t Ve

By proceeding as in Ref. [4], that is, multiplying by
J x¢d®*% ~ Vy ~ £3 and dividing by §Z7, we obtain an
estimate for the maximum value of the function T,. As
an order of magnitude estimate, the isovorticity surfaces
then turn out to be proportional to
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2 3 €2 y3/25,1/2 | C3 j2¢r2
A; <¢ [C1Z+V1/2€ 0Z, +VCA£ 524] (5)

(c2 is a constant). The first term on the right hand side
of Eq. (5) derives from the dissipative terms and dom-
inates at small scales, giving rise to smooth isovorticity
surfaces with dimension D = 2. The third term is due
to the nonlinear energy cascade realized over times 7. It
dominates at larger scales £ and gives rise to a dimension

11 1 ~
DZT‘*‘Z(I—Dl/z) . (6)
As shown by Biskamp [4], in the absence of intermittency
the dimension D = 11/4 = 2.75 can be found in MHD
simulations. The difference with respect to the usual es-
timate D = 8/3 in hydrodynamic flows [2,3] is due to the
presence of the Alfvén effect which modifies the exponent
&y from 1/3 to 1/4. The correction due to intermittency
is even small. Indeed, for example, in the usual p model
[15,11] where D, = log, [p? + (1 — p)?]*/*~®, by using
the most probable value p ~ 0.7 [11], it can be found
that the correction is of the order of 1.6 x 102, so that
D = 2.76. The second term in Eq. (5) is due to the
eventual occurrence of the resistive instabilities in MHD.
This term dominates at scales £4 < £ < £;. It gives rise
to a dimension of the level surface, given by

D=i‘—g %(1431/8) : (7

In the absence of intermittency D = 2.31, while in the
presence of intermittency D = 2.32. Looking at Eq. (5),
it can be seen that the second term becomes dominant
when the local Reynolds number Sy, ~ (c1/c2)?, from
which we can calculate the Reynolds number dependence
of the inner scale £, as

(4./L) ~ C,R™Y/(+&) | (8)

with C, = (c1/c2)?/(1+41), It can be noted that, when
the reconnecting instability is not taken into account, the
Reynolds number dependence of the inner scale becomes

(¢./L) ~ C,R™%/(2+&) |

where C, = (c1/c3)?/(37¢1). Finally, by looking at Eq. (8)
it can be noted that the reconnecting scale ¢; is greater
than the inner scale £, providing the ratio ¢;/c3 is small
enough, that is, (c1/c3) < RY where v = 2£;/(1 + 3¢;) ~
2/7.

In summary, we have investigated one of the effects
of the tearing instability which, if effectively at work,
could change the dynamical properties of the small-scale
MHD turbulence. We argued that the instability could be
responsible for the appearance, at the scaling range 44 <
£ < £;, of a level set for the isovorticity with dimension
of the order of D = 37/16. It is worthwhile to remark
that the occurrence of the tearing instability in MHD
turbulence is still a matter of debate, since, even if it
seems to be evident in some numerical simulations, no
definitive supporting evidence has been reported.
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